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1. Introduction

Recent advances in Monte Carlo algorithms for systems of interacting elec-
trons have made possible the detailed study of the spatial dependence of
spin and charge correlations in the Anderson singie impurity model. The
hamiltonian for this model [1]

H=2 dkCdsCks’
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has a non-degenerate impurity state with energy e, hybridized with strength
de to energy states €y of some conduction band. n addition it has a

Coulomb interaction U between electrons with oppositely paired spins that
try to occupy the iimpurity state.

d

As a function of interaction parameters and tempeorature, the model exhibits
a variety of interesting many-body phenomena [2,3]. One of these phenomena
is the existence of a local magnet moment at the impurity and the compensa-
tion of this moment by a spin cloud that leaves the system in a singlet state
as T » 0. Prior to recent Monte Carlo simulations the structure of this spin
compensation cloud was accessible only through perturbative th2ories that
lead to somewhat controversial or incomplete results [4].

In investigations of the spatial dependence of this spin compensation,
the first [5] of a series of Monte Carlo studies found RKKY and Friedel-1ike
oscillations with a strong negative (antiferromagnetic) correlation between
electrons at the impurity site and those at the lattice site with which it
fnteracts. With a wave number of 2k., these oscillations alternated in
sign and decreased in amplitude as tﬁe distance from the impurity site
increased. The principal limitation of this study was its inability to
probe temperatures well below the Kondo tewmperature T,. Subsequently
proposed was another approach [6] that reached these *ow temperatures, at
the expense of losing the information about the spatial dependence of
correlations, and had the additinnal advantage of embedding the impurity in
an infinite system. The most recent study [7] showed within this new
approach how to recover the spatial dependence and presented low tempcrature
results that had several surprising features.



Perhaps the most surprising feature was the possible extension of the
spin compensation cloud to distances beyond the apparent natural length
ve/T,, where v. is the fermi velocity. If the compensation in physical
s§st§ms is thi§ long-ranged, then the single impurity results would most
1ikely have applicability only to very dilute alloys, and the quantitative
comparison between theory and experiment, notwithstanding the neglect of
orbital degeneracy, would be difficult. Along with a closer examination of
this possible long-ranged correlation, several other interesting features
were found that await a clearer understanding. These novel features in-
cluded a non-monotonic variation of the lattice site to impurity site spin
correlation as a function of the Coulomb interaction.

The principel purpose of this short note is to present corroborative
results for most of these features. A secondary purpose is to highlight
several additional systematic, but small, features that become apparent by
going to lower temperatures. Whereas the original study assumed the compu-
tationally convenient model of the conduction band as a broad flat density
of states and a free-electron dispersion, here we assume a one-dimensional,
tight-binding band

g, =" 2cos k . (2)

In the next section we summarize the Monte Carlo procedure. Then in the
third section we present the results of our calculation. In the fourth and
final section we summarize our findings and comment on further applications
of the procedure to the study of quantum many body phenomena.

2. Procedure

The procedure we use is tnat of [7] and starts with a discrete, path integral
approach [8] to the evaluation of the partition function in which the tempera-
ture axis is divided into L steps of size t = B/L. At each step the Trotter
approximation is made

e ~ @ e (3)

and then the interaction term in the hamiltonian is eliminated by intro-
ducing auxiliary Ising variables 9 (9], one for each step,

o
“gng, g,y "oy gy ng,)
e =3 e

with cosh vJ = exp(-tU/2). After this transformation the partition function
becomes

Z=Tr, exp(-X Tr 2n g°[o]) (4)
s

where the matrix gs[o] is the equal-time thermodynamir Green's function whose
elements are defined by

9i,(90') = <Tey(0) ¢y (2')> (%)



The Monte Carlo part of the procedure performs the trace over the o config-
urations and consists of successively flipping the o, and accepting or re-
jecting the flip on the basis of whether the quantity R/(1+R) is greater
than or less than a random number between O and 1 [5]. R is the ratio of
the partition function for the new configuration to partition function for
the old configuration and equals R,R with

- _ .S s _
= (1+ (1 - gj (20))(a3(8) - 1) (6)
where AZ(R) is the change in energy caused by the change in the field.

As pointed out by Hirsch and Fye (6], within the Trotter approximation
there is a general relation between the spatial and time eleaments of the
Green's functions for two o configurations differing at time step ¢". For
each componernt of electron spin

05020 = 9y(08) ¢ (Bygdypn - 9y4(a2")
x (a4(2") - 1) gdj(!l"ﬁ') (7)

In our Monte Carlo procedure we use this relation for three differaent pur-
poses [7]. First to initialize the calculation, we chose the o, randomly.
Having computed the gdd(zz') for the non-interacting problem, w& use (7)

jteratively t» turn on the o, one at a time at each step of the interation
to obtain gad(ﬁz') for the c&mplete configuration: With the unperturbed

gdd(zn‘) we use (7) to find gad(zz') for system with just ay. We then use

this a gdd(zﬂ') nn the right side of (7) to find gad(zz') for a system with
9, and g, We cuntinue turning on the spins this way until we construct the
Green's function for all the spin variables. With the gdd(zz') we can begin

the Monte Carlc steps and evaluate (6). 'f we accept the flip, we use (7)
again to compute the gdd(ﬂz) for the new configuration [10],

. (944020 1)(8,(2)"1)g 44(29)
9gq(22) = 9gqq(28) - TH{T-9, () (5,(2)-1) (8)

The third use of (5) is to recover the spatial information about the
Green's functions, since only the impurity elements g_ . (22') are the natural
product from the Monte Carlo steps. Here we are integgsted in determining
gdj(LL). gid(LL) and g‘j(LL). From (7) we have

l 1 1 : - ' | - 1 o
9ugLe') = guq(Le') + (5 pu = guq(Le))(ay(2") - 1)gy,(2"e") (92)
| | | - n " - ] ol
9gi(Le') = gqq(Le') + (8 gu = Ggq(Le"))(By(2") = gy, (2"2") (96)
where j fs a lattice site. We use (9) the same way as we used (7) to get
gdd(zn ): Starting with the non-interacting Green's functions g??(LE ) and

(LL'), we iterate (9) and at each step turn-on a new spin unt ng(LE )
f8¢ the given configuration is constructed.

To find g,,(LL) and 9 (LL), we use a similar procedure except we rewrite
(7) by 1nter94anging the iabels ¢f the oid and new configurations

g¥j(22‘) = Q1J(£2') - (6fd622“ = g;d(ﬂﬂ“))



X (aghe") = 1) gy (e"2") (10)

This leads to

g} g(LL) = g, ((LL) + gy (L") (a5 (2")-1)g (2" L) (11a)

ggj(LL)
with i and j being lattice sites. Hence starting with gad(LL) and g%d(LL)
found from equation (8) and with the non-interacting gdj(LL) and gij(LL)’
we use the iteration-turn-on technique to find g&j(LL) and g;j(LL). An

iniportant point to appreciate about the procedures just outlined is we

can start with the Green's function for an infinite, non-interacting system
and obtain the Green's function of the infinite interacting system at a
finite number of states of our choosing.

9y (L) + i (Le")(ag (2" 1)gyq(2"L) (11b)

With the Green's functions one can compute the thermodynamics
quantities of interest. In this paper we are mainly interested in the
impurity susceptibility

B
Txd = IO dt<0d(t)0d(L)> (12a)

the impurity moment
- 2
Sq = <(o4(LN (12b)

and the correlation between the spin at the impurity and the spin at
lattice sites

S(1) = <ag(L)a;(L)> (12c)
where 94 = Ngr ~ Ngy and o4 = Mgy 7 My,

The averages over the products of these spins are related to the Green's
functions by use of Wick's theorem. The application of Wick's theorem
simplifies somewhat because the introduction of the auxiliary fields leaves

the Green's function in a representation block-diagonal in the electron spin.
As an example, we can express (12c¢) as

IR S S ST Y S
S(1) = <(9947949)(9417941)> = <934941*914941” (13)

where the average is over o configurations.

We will also present results showing the nature of charge compensation.
Defining Ng = Ngs*Ny and Ny = Ny4n, ., we have the following quantities in
analogy to oquaqxon t12):

p
T nd = yo dt<nd(t)nd(L)> (14a)

Cy = <(nd(L))2> (14b)



C(i) = <ny(L) ny(L)> = <n (L)><n.(L)> (14c)

To compute the averages over the o configurations, we generate 1024
configurations to equilibrate the system, and then generate an additional
5120 configurations from which we compute the averages. These additional
configurations are split into 20 groups on which we do coarse grain-
averaging and obtain estimates of statistical error [11]. In general, our
statistical error is no more than several percent and is larger than error
we mnake using the Trotter approximation. This latter error limits the
accuracy of our Green's functions to about the fourth decimal place and is
noticeable only at low temperatures when some of our measured quantities
become comparably sized.

3. Results

Here we report results for the particle-hole symmetric case where ¢, = -U/2
and g = 1. For all our calculations t = 0.25 and the fermi eneggy
M=0. At T=U= 0 this choice of y corresponds to a half-filled band.

We considered cases for V =1 and 1/J2, so that at U = 0 the full width of
the impurity resonance, 2I' = onVZ, is 1 and 1/2. For I' = 1/2, we computed

cases for U=1/4, 1/2, 1, 2, 3, and 4, forT =1/4, U=0,1, 2, 4. A
summary of our results will now be given.

Three~-dimensional plots of the spatial and temperature dependence of the
spin-correlation (12c) and charge correlation (1l4c) functions for U = 0 and
2 are shown in Fig. 1. Apart from the overall scale, the two U cases are
remarkably similar: There is a strong negative correlation between the
impurity and the central lattice site, and the amplitude decreases as it
spreads to other sites in the lattice. For B < 10 cnly a few nearest
neighbors are correlated to the impurity, while for B < 10, the correlation
spreads more rapidly outward and the amplitudes at the impurity and the
closest neighbors are becoming somewhat independent of 8.

To see specific effects of U # 0 on these correlations, we have to take
a closer look at their U and B dependence. We find the principal effect of
U# 0 is the induction of ferromagnetic spin correlations at the sites
between the antiferromagnetically correlated sites. These correlations
increase with increasing U. On the other hand, the correlations at the
antiferromagnetic sites are often supressed if U becomes large enough. The
number of sites at which this suppression occurs is reduced to just the
inourity site if B is well above B,. The importance of being at low tem-
pe ‘atures to reduce the suppressioﬁ of the antiferromagnetic correlations
was underscored by comparing the results for I = 1/2 and 1/4. For most our
U values the lower I' pushes B, outside the range of our simulation and the
suppression then occurs at mo§t of antiferromagnetic sites studied.

The Coulomb interaction also induces a nejative charge correlation at
sites where the ferromagnetic spin correlation was induced. These correla-
tions show a non-monotonic vartation with U -- first increasing, then de-
creasing. The correlations at the antiferromagnetically correlated spin
sites are suppressed as U is increased. We note that our charge correla-
tion function (l4c) differs from that discussed in [7] since at each site
we subtract from <n n,> the decorrelated value <n_><n,> for that site as
opposed to the decogr lated valued for a site infqn1t31y far away. The
definition also allows (16), defined below, to express charge conversation
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Fig 1 On the top row is the spin and charge correlation functions for V = 1
and U = 0 as a function of position and B. On the bottom row are the same
corre’ation functions but with U = 2.

at T =0 as TN, ~+» 1 for the symmetric model and makes S(i) = C(i) for U =0
as can be seen ?rom Fig. 1. Hence the U = 2 plots in this figure dramatizes
the different consequences a non-zero interaction has on the spin and charge
correlations. OQverall increasing U enhances spin correlations and suppresses
charge correlations, but specific details show a range of behavior. Some of
the behaviur just summarized is 1llustrated in Fig. 2. We point out that
most of the effects are quite small.

For a given U, the effect of increasing p is to increase the antiferro-
magnetic spin correlations. At large B the rate of increase slows to the
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Fig. 2 Vvariation of the spin and charge correlations as a function of pos-
ition and U. The solid lines connect the values of the function at odd
lattice sites, which include the impurity site, and the dashed lines, the
even sites. For the spin correlation the upper 1ine of each type corre-
sponds to U = 4. For the charge correlations, the lowest solid 1ine corre-
sponds to U = 0, while lowest dashed 1ine corresponds to U = 0. Plotted
are cases for U=0, 1, 2, 3, and 4.

point where in some cases the correlations at the impurity and several
nearby sites appear to be saturating. On the other hand, the ferromagnetic
spin correlations at first increase and then become suppressed as f is
increased. Only for B above B, do the trends become most apparent. The
charge correlations behave sim*1arly. Some of this behavior is depicted in
Fig. 3. Again the effects are generally small.

In [7] the following sum rule, representing the spin compensation in the
ssme spirit as the Clogston-Anderson compensation theorem [12], was found to
hold

: <o (L) 0,(L)> = Tx, - <cd(L)2> (15)

We also find this relation to hold, as well as the analogous relation for
charge compensation

: <ng(L) ny(L)> = T 0y - <nd(L)2> (16)

At low temperatures we find the correlation functions to decay as i For
the spin compensation sum rule to hold, we had to correct the sum over 1 < i <
|20| by fittjgg the ferromagnetic and antiferromagnetic peaks separately to
the form A 1 = and then summing the resulting expression over a large number
of additional sites. For charge compensation this procedure, for all prac-
ticle purposes, was unnecessary. At high temperatures we found an exponential
decay instead of the power law behavior. These functional dependences on i
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Fig. 3 Vvariation of the spin and charge correlations as a function of
position and B. The line types are described in Fig. 2. In both figures

the lowest lying solid and dashed lines, which for the most part are straight
lines, corresonds to p = 10. Plotted are the cases for p = 10, 30, 50, 70,
and 90.

were also found for the U = 0 case. The different behaviors are illustrated
in Fig. 4.

4. Summary

We summarized the results of a series of quantum Monte Carlo calculations

of the spatial dependence of spin and charge correlations in a one-dimen-
sional, single impurity, symmetric Anderson model. We corroborated several
features of [7], and because we achieved lower temperatures, we were able

to identify several additional unusual features in the behavior of the cor-
relations as functions of U and B. We also showed the existence of a charge
compensation sum rule and found a power law decay of the correlations at

low temperatures.

To corroborate some of the low temperature behavior discussed here,
carrying the calculation to lower temperatures would be desirable but unfor-
tunately !ouId also be costly. The procedure described scales in computer
time as L, and on a Cray X-MP/48 for the number sweens descrited, the 360
steps to achieve B = 90 took around 135 minutes. The vectorization achieved
on a Cray computer reduces power in L~ to something slightly less than 3.
Although slightly less, the reduction in time 1s noticeable at low tempera-
tures. Not withstanding this, doubling B wnuld be expensive to do and most
likely be just partly helpful.

Within the parameter and temperature range discussed here, there are
other interesting aspects of the Anderson model that can be explored. For
the asymmetric Anderson model, valence fluctuation phenomena occur and can
easily be studied and has been observed with the same program used for the
symmetric model [13]. Orbital degeneracy effects and magnetic fields can
be added to the mode!, and as pointed out elsewhere [6,7], more than one
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Fig. 4 The functional form of the spatial dependence of the spin and charge
correlations at high and lowest temperatures. In the top row the straight
lines, indicative of a exponential, are for B = 10; on the bottom row the
straight lines, indicative of a power law, B = 90. The line types are
defined in Fig. 2.

impurity can be treated and realistic band structures can be used. Some of
this work is currently underway.
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